Neuroprotezy: czy niewidomi mogą odzyskać wzrok? Od kilku lat na świecie wykonywane są już np. operacje wszczepiania implantu, który przywraca widzenie osobom z degeneracją siatkówki. Fot. Shutterstock

Żeby móc konstruować m.in. coraz lepsze implanty oka, trzeba się jeszcze sporo dowiedzieć o sygnałach elektrycznych, jakie przesyłają między sobą komórki nerwowe. Dzięki pomocy Polaków komunikacja komputer-mózg może być jeszcze bardziej precyzyjna.

Komórki nerwowe komunikują się pomiędzy sobą za pomocą sygnałów elektrycznych. Od dawna człowiek próbuje tę komunikację podejrzeć. Wiedza o działaniu fal mózgowych - czyli aktywności elektrycznej mózgu - od lat przydaje się np. w medycynie (badanie EEG) czy psychologii (biofeedback).

Możliwość pobudzania komórek nerwowych oraz rejestracji ich aktywności jest kluczowa m. in. dla rozwoju kolejnych generacji neuroprotez. Od kilku lat na świecie wykonywane są już np. operacje wszczepiania implantu, który przywraca widzenie osobom z degeneracją siatkówki. Taka proteza to urządzenie, które sygnał z kamery przetwarza na impulsy elektryczne. Impulsy te są potem przesyłane za pomocą elektrod do komórek siatkówki. A wtedy komórki nerwowe zaczynają przesyłać do mózgu informację... o obrazie.

Na razie jednak implanty nie są tak sprawne, jak nasze oczy - obraz, jaki przekazują, jest niskiej jakości. Tak więc osoby niewidome dzięki implantowi potrafią np. znaleźć w pomieszczeniu drzwi, ale nie widzą ich od razu, a dopiero po jakiejś chwili. Mózg potrzebuje bowiem czasu na zinterpretowanie nieprecyzyjnego jeszcze sygnału z protezy. Aby takie implanty były coraz lepsze, potrzeba jeszcze wiele badań. Takie prace prowadzone są m.in. na Uniwersytecie Stanforda w Kalifornii. W badaniach tych swój udział mają również badacze z Akademii Górniczo-Hutniczej w Krakowie.

Dr Paweł Hottowy z AGH opisuje, jak wygląda urządzenie, które wykorzystują w badaniach naukowcy. Składa się ono na razie z 512 maleńkich niezależnych elektrod, które stykają się z komórkami nerwowymi siatkówki oka i przekazują delikatne impulsy komórkom nerwowym (zajmują one powierzchnię 0,5 mm2). Jednocześnie urządzenie zbiera od komórek informacje o ich aktywności. Dzięki temu naukowcy wiedzą, z jaką reakcją komórek spotyka się sygnał stymulacyjny i czy impuls elektryczny wystarczył, by w pobudzić komórkę. - W ten sposób uczymy się, jak najlepiej stymulować komórki - tłumaczy dr Hottowy.

- Nasza rola w projekcie polega przede wszystkim na dostarczeniu specjalistycznej aparatury elektronicznej do tych badań - opowiada fizyk. Jak wyjaśnia, chodzi o miniaturowe układy scalone, dzięki którym podczas eksperymentu można dostarczyć komórce precyzyjnie dobrane sygnały elektryczne, a jednocześnie odebrać, wzmocnić i zarejestrować słabiuteńkie sygnały, jakie powstają w komórkach nerwowych. - Równoczesna stymulacja i rejestracja aktywności neuronów jest szczególnie trudnym zadaniem. Nasz system pomiarowy jest jedynym na świecie, który to umożliwia - mówi naukowiec. Badacze z AGH biorą też udział w analizie danych z eksperymentów.

Współpraca polskich i amerykańskich naukowców jest wspierana przez grant „Harmonia” przyznany zespołowi z AGH przez Narodowe Centrum Nauki.

Więcej: www.naukawpolsce.pap.pl

Podobał się artykuł? Podziel się!
comments powered by Disqus

PARTNER DZIAŁU

  • MSD

BĄDŹ NA BIEŻĄCO Z MEDYCYNĄ!

Newsletter

Najważniejsze informacje portalu rynekzdrowia.pl prosto na Twój e-mail

Rynekzdrowia.pl: polub nas na Facebooku

Rynekzdrowia.pl: dołącz do nas na Google+

Obserwuj Rynek Zdrowia na Twitterze

RSS - wiadomości na czytnikach i w aplikacjach mobilnych

POLECAMY W PORTALACH